Question 3.

Find $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\frac{1}{n}\right)$, where \ln denotes the natural logarithm.

Solution

It is known that

$$
-1=\int_{0}^{1} \ln x d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Then,

$$
\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\frac{1}{n}\right) \geq \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right) \rightarrow-1
$$

$0<\frac{1}{n} \leq 1$, for $n_{0}=1$, therefore

$$
\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\frac{1}{n}\right) \leq \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+1\right)
$$

Since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+1\right)=\int_{0}^{1} \ln (x+1) d x \\
&=\int_{1}^{2} \ln x d x \approx 0.38629
\end{aligned}
$$

We obtain the result as $n \rightarrow \infty, \frac{1}{n} \rightarrow 0$, therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\frac{1}{n}\right)=-1
$$

